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Abstract
Understanding the molecular underpinnings of learning and memory processes remains a focal point in 
neuroscience. Exposure to novel environments promotes learning and memory formation. This study inves-
tigated the role of two activity-regulated immediate early genes, Plaur (encodes urokinase receptor, uPAR) 
and Plat (encodes tissue plasminogen activator, tPA), in response to environmental novelty in the mouse 
brain. As integral components of the plasminogen activator system, these genes contribute to synaptic plas-
ticity, neuronal migration, and brain function. Using the open field as a model of novelty, we demonstrated 
a rapid, within 1 h after exposure, induction of Plaur and Plat expression in the posterior cortex and hip-
pocampus. Immunofluorescence staining corroborates the upregulation of tPA protein in hippocampus 24 h 
following open field exposure. Additionally, a brief one-hour exposure to an enriched environment triggers 
an early induction of Plaur expression in the anterior cortex, while prolonged exposure for 24 h results in 
a transient downregulation of Plat in the posterior cortex. These findings highlight the dynamic regula-
tion of immediate early genes in response to environmental novelty, providing insights into the molecular 
mechanisms underlying cognitive processes and the involvement of the plasminogen activator system in 
these processes. Further analysis of the expression of plasminogen activator genes under conditions of 
novelty exposure and learning will allow us to identify new molecular targets that describe the mechanisms 
of learning and memory encoding in the brain.
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NCAM  Neuronal cell adhesion molecule
NMDA  Glutamate receptor (N-methyl-D-aspartate)
PBS  Phosphate-buffered saline
PCR  Polymerase chain reactio
PKMζ  Plasticity-related protein kinase Mζ
Plat  Plasminogen activator, tissue type
Plaur  Plasminogen activator, urokinase receptor
proBDNF  Precursor of brain-derived neurotrophic factor
qPCR  Quantitative polymerase chain reaction
ROUT  Nonlinear regression and outlier removal
tPA  Tissue-type plasminogen activator
uPAR  Urokinase plasminogen activator receptor

Introduction

Learning and memory are essential cognitive functions that allow us to acquire, retain and retrieve information about 
the world around us, forming the basis of postnatal cognitive development [18]. The efficiency of learning and memory 
relies on the ability to recognise and integrate novel information [17]. Exposure to novelty enhances the subsequent learn-
ing process by promoting long-term memory formation, a phenomenon known as behavioural tagging [57]. Behavioural 
tagging, a process that participates in the formation of both hippocampus- and cerebral cortex-dependent long-term 
memories, largely relies on the synthesis of synaptic plasticity-related proteins induced by novel stimuli [3, 29]. Novelty 
recognition, learning and memory act within specific populations of brain neurons and involve the coordination of differ-
ent molecular and cellular events, including activity-regulated gene expression in activated neurons [17, 18]. Immediate 
early genes are the genes whose expression is rapidly upregulated after a given cellular stimulus (e.g., in response to neu-
ronal activity) without the requirement for de novo protein synthesis [4]. The products of immediate early genes include 
transcription factors (e.g., c-Fos), effector proteins acting at the synaptic level (e.g. synaptic plasticity-related proteins), 
non-coding RNAs and others [1, 4, 51]. Immediate early genes are implicated in learning, memory, novelty recognition, 
and synaptic plasticity [13, 27, 40, 56].
We have recently described that two activity-regulated genes, Plat (encoding tissue plasminogen activator, tPA) and Plaur 
(encoding urokinase receptor, uPAR), act as immediate early genes in response to generalized neuronal activation in 
seizure model [50]. Both tPA and uPAR are a part of the plasminogen activator system, which also comprises urokinase 
uPA and plasminogen activator inhibitors (PAI-1 and PAI-2) [16, 47]. uPA and tPA are serine proteases that catalyze the 
conversion of plasminogen to plasmin, a protease that can degrade fibrin and other extracellular matrix proteins [47]. In 
the central nervous system, tPA promotes extracellular matrix degradation, cell migration, proteolysis and activation of 
growth factors, neurotrophic factors (e.g. precursor of brain-derived neurotrophic factor, BDNF) and NMDA receptors 
[47]. tPA is, therefore, an important molecular player in synaptic plasticity, dendritic spine pruning, learning, memory 
formation, and fear response, but also in excitotoxicity, brain inflammation and increased brain-blood barrier permeability 
[15, 24, 26]. uPAR is a cellular membrane receptor for uPA that enhances the enzyme’s activity, stimulates pericellular 
proteolysis and triggers intracellular signalling that promotes cell survival, proliferation, migration, neurite formation and 
branching [11, 22, 38, 39, 45, 46, 49]. Both tPA and uPAR promote neuronal migration in developing mouse brains [12, 
44, 48]. PLAUR  gene polymorphisms are associated with autism spectrum disorders [6, 7]. Gene variants of tPA- and 
uPA/uPAR-interacting low-density lipoprotein receptor-related protein 1 (LRP1) are implicated in schizophrenia risk [37, 
52]. This evidence suggests that tPA and uPAR are involved in brain and neuronal functioning, and contribute to synaptic 
plasticity. They thus could be potential candidates for plasticity-related proteins that are produced in response to novelty 
exposure and participate in long-term memory formation.
This study aimed to determine whether exposure to environmental novelty induces changes in the expression of the 
activity-regulated immediate early genes Plaur and Plat in the mouse brain. The exploration of an open field (OF), a model 
of environmental novelty experience, was found to rapidly (within 1 h) induce the expression of Plaur and Plat genes in 
the posterior cortex and hippocampus. The upregulation of tPA was observed at the protein level, while uPAR was not 
detectably expressed in the brain. Exposure to an enriched environment (EE), another type of environmental novelty, also 
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induced early upregulation of Plaur, but not Plat, in the anterior cortex. These findings contribute to the understanding 
of how novelty experiences influence immediate early gene expression in the mouse brain. Investigating the modulation 
of plasminogen activator gene expression during exposure to novelty and learning could reveal novel molecular targets 
that elucidate the mechanisms underlying the neuronal encoding of cognitive information.

Materials and Methods

Animals

Adult male C57BL/6 J mice (RRID: IMSR_JAX: 000664) aged 12–14 weeks, weighing 28.2 ± 3.7 g, were obtained 
from the SPF-vivarium of the Center for Collective Use of the Institute of Cytology and Genetics, Siberian Branch of the 
Russian Academy of Sciences (Novosibirsk, Russia). Mice were maintained on a standard 12-h light cycle at constant 
temperature (22 ± 2 °C) and humidity (45–65%). Water and food were available ad libitum. The study was carried out in 
accordance with the PREPARE Guideline and the Directive 2010/63/EU of the European Parliament and of the Council 
on the protection of animals used for scientific purposes. The study carefully considered the minimum number of animals 
required for valid results, and efforts were made to minimize pain and distress during the experiments. The conditions 
for keeping animals and experimental procedures were approved by the Bioethics Commission of Lomonosov Moscow 
State University.

Open field exposure

Open field (OF) exposure was used as a model of environmental novelty. Mice were placed in the center of the OF 
apparatus (44 × 44 × 44 cm with gray surface and walls) and were allowed to freely explore the arena for 10 min. The 
OF was cleaned with a 70% ethanol solution between animals to remove odours. Mice were then returned to their home 
cages. Control mice (0 h) were directly taken from their home cages. A total of 65 animals were randomly assigned to five 
experimental groups (0.5 h, 1 h, 3 h, 24 h, and 72 h) and one control group (0 h), each comprising 6–12 mice (biological 
replicates). At their respective time points after OF exposure, mice were lethally euthanized by cervical dislocation. Brains 
were then removed and either dissected into specific brain structures (anterior cortex, posterior cortex, and hippocampus 
as described previously [50, 54] or prepared for immunofluorescent staining. The experimental setup and its main stages 
are shown in Supplementary Fig. 1.

Enriched environment exposure

Enriched environment (EE) exposure was used as another type of environmental novelty. Mice (n = 60) were placed in 
an EE—a large rodent cage (80 × 50 × 70 cm) with lattice walls and a plastic floor. Novel objects, such as shelters, ladders, 
a running wheel, and tunnels, were placed in the cage. In addition, the mice were fed a novel diet containing seeds and 
granules. Every two days, the objects were rearranged and some were replaced with new ones to maintain novelty. Mice 
were kept in EE for 1 h, 3.5 h, 24 h, or 14 days. Control mice (0 h) were directly taken from their home cages. At indicated 
time points, mice were euthanized by cervical dislocation and the brain was removed and dissected into the anterior cortex, 
posterior cortex, and hippocampus. The brain tissues were frozen in liquid nitrogen and stored at −80 °C until RNA was 
extracted. Each experimental and control group consisted of 6–12 mice (biological replicates). The experimental setup 
and its main stages are shown in Supplementary Figure S1.

RNA isolation, reverse transcription and quantitative PCR (qPCR)

Brain tissue was quickly frozen in liquid nitrogen and stored at −80 °C until RNA extraction. Total RNA was isolated 
from flash-frozen brain tissue using Trizol reagent (Invitrogen, USA, no. 15596026) according to the manufacturer’s pro-
tocol. The quality and quantity of total RNA were measured using a NanoDrop1000 spectrophotometer (Thermo Fisher 
Scientific, USA). For further cDNA synthesis, RNA with an A260/280 ratio of at least 2.00 and an A260/230 ratio of at 
least 1.70 was used. cDNA synthesis was carried out with 1 μg of total RNA using the MMLV set RT (Evrogen, Russia, 
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No. SK021) with oligo (dT) and random (dN) primers. qPCR was performed using qPCRmix-HS SYBR (Evrogen, Rus-
sia, No. PК147L) on a CFX96 Touch real-time PCR device (Bio-Rad, USA). Mouse cDNA primers were synthesized by 
Evrogen, Russia (Supplementary Table S1). The amplification program consisted of a 5-min denaturation step at 95 °C, 
followed by 40 amplification cycles consisting of 15 s of denaturation at 95 °C, 30 s of annealing at 62 °C, and 20 s of 
elongation at 72 °C. PCR for each sample was performed in three technical replicates. Relative transcript levels were 
calculated using the  2−ΔΔCt method with Actb as the reference gene; normalization was performed by taking the average 
level of each transcript in the control (0 h) as one.

Immunofluorescent staining, microscopy and image analysis

For immunofluorescence staining, isolated and mouse brain samples were fixed in 4% paraformaldehyde (Panreac), 
washed in phosphate-buffered saline (PBS), and frozen in liquid nitrogen to prepare 5-μm-thick cryostat sections. Sections 
were then dried, washed, and blocked with 10% secondary antibody donor serum supplemented with 1% bovine serum 
albumin (BSA, Sigma-Aldrich) for 1 h. After washing in PBS, sections were incubated overnight with primary antibod-
ies against uPAR (Abcam, cat. #Ab103791), tPA (Cloud-Clone, cat. #PAA525Mu01), and neurofilament-200 (NF200, 
neuronal marker, MyBioSource, cat. #MBS175078) or non-immune IgG as a control for staining specificity. Samples 
were then washed three times with PBS and incubated with secondary antibodies conjugated to Alexa Fluor®594 and 
Alexa Fluor®488 (1:1000 dilution, Molecular Probes) for 1 h at room temperature. To visualize nuclei, samples were 
counterstained with DAPI (Sigma Aldrich). Samples were washed with PBS and mounted in an Aqua Poly Mount poly-
merisation medium (Polysciences). Images were acquired using a Leica DFC 7000 fluorescent microscopy with a 10 × and 
20 × objective. DAPI, AlexaFluor®488, and AlexaFluor®594 fluorescences were sequentially excited using lasers with 
405, 488, and 594 wave lengths, respectively. All images were captured with the same confocal gain and offset settings. 
The specificity of the staining was confirmed using non-immune IgG antibodies (Supplementary figure S2).
To quantify tPA protein expression in brain tissue, images were processed using Fiji software [42] (ImageJ version 
2.1.0/1.53c). The boundaries of visible brain tissue were manually delineated using the polygon selection tool, the mean 
grey value in the AF488 (green) channel was measured and normalized to the mean values in control (0 h) samples.

Statistical analysis

All data were analyzed using GraphPad Prism 9 software (GraphPad Software Inc., USA) and represented as individual 
values, mean ± SEM. Data were tested for normality of distribution using the D’Agostino-Pearson normality test. Outliers 
were excluded using the nonlinear regression and outlier removal (ROUT) method with Q = 1%, and data were re-checked 
for normality. Unpaired t-test was used to compare the data between two groups. ANOVA followed by Dunnett’s post hoc 
test was applied for the comparison of experimental groups versus the control group (0 h). The unit of analysis was one 
animal. Values of p < 0.05 were considered statistically significant.

Results

The primary objective of the present study was to investigate whether the novelty experience alters the expression of 
activity-regulated immediate early genes Plaur and Plat in mouse brain tissue. Beyond its classical application in neu-
robehavioral studies, OF exploration was previously described as a model of novelty experience in mice [19, 58]. We, 
therefore, examined whether brief exposure to OF (10 min) resulted in short- and long-term changes in gene expression 
in mouse brains at time points ranging from 30 min to 3 days after OF exposure.
To validate the model, we first evaluated the expression of Arc, an established immediate early gene that was previously 
shown to be rapidly upregulated in neurons after exposure to a novel environment [14, 56]. As expected, the exposure to OF 
led to a prominent increase in Arc expression in the anterior cortex (9.728 ± 2.321 vs 1.000 ± 0.124 at 0 h, p = 0.0005), in 
the posterior cortex (5.977 ± 0.991 vs 1.000 ± 0.229 at 0 h, p = 0.0094) and hippocampus (24.00 ± 2.176 vs 1.000 ± 0.142, 
p < 0.0001) (Fig. 1B, 1C) within 1 h. Futher analysis showed that exposure to environmental novelty resulted in a rapid 
significant induction of Plaur expression in the posterior cortex (3.362 ± 0.335 vs 1.000 ± 0.138 at 0 h, p < 0.0001) and 
hippocampus (1.729 ± 0.207 vs 1.000 ± 0.125, p = 0.0303) already at 1 h after OF exploration (Fig. 1E, 1F). At 24 h after 
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OF exploration, a significant increase in Plaur expression was observed in all brain regions examined: in the anterior cortex 
(4.724 ± 0.769 vs 1.000 ± 0.116 at 0 h, p < 0.0001), posterior cortex (1.961 ± 0.222 vs 1.000 ± 0.138 at 0 h, p = 0.0039), 
and hippocampus (1.828 ± 0.211 vs 1.000 ± 0.125, p = 0.0084) (Fig. 1D-1F). The most potent Plaur induction at 1 h was 
observed in the posterior cortex, while at 24 h—in the anterior cortex (Fig. 1G). At 72 h after OF exposure, Plaur expres-
sion returned to basal levels in all brain regions examined (Fig. 1D-1G).
Similar to Plaur, Plat expression was also rapidly and significantly induced in the mouse brain by exposure to OF. Already 
at 0.5 h after OF exploration, Plat was significantly upregulated in the posterior cortex (3.851 ± 0.751 vs 1.000 ± 0.162 at 
0 h, p = 0.0001, Fig. 1I). At 1 h after OF exploration, Plat expression was significantly increased in both the posterior cortex 
(3.092 ± 0.629 vs 1.000 ± 0.162 at 0 h, p = 0.0053) and hippocampus (2.053 ± 0.379 vs 1.000 ± 0.211 at 0 h, p = 0.0094) (Fig. 1I, 
1J). At 24 h after OF exploration, Plat expression was significantly elevated in all brain regions examined: in the anterior cortex 

Fig. 1  The level of Arc, Plaur and Plat relative expression in mouse brain after open field environmental novelty: (A, D, H) in the ante-
rior cortex; (B, E, I) in the posterior cortex; (C, F, J) in the hippocampus and (F, J) in three regions combined. (A-C) upaired t-test, (D-K) 
ANOVA, Dunnett’s post hoc test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data are shown as individual values, mean ± SEM. 
Each time point group comprised 9–12 mice
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(8.772 ± 1.880 vs 1.000 ± 0.072 at 0 h, p < 0.0001), the posterior cortex (2.627 ± 0.233 vs 1.000 ± 0.162 at 0 h, p = 0.0301) and 
hippocampus (1.988 ± 0.264 vs 1.000 ± 0.211 at 0 h, p = 0.0202) (Fig. 1H-1J). At 1 h, the posterior cortex showed the strongest 
Plat induction, while at 24 h, the strongest Plat induction was observed in the anterior cortex (Fig. 1K). In all studied brain 
regions, 72 h after OF exposure, Plat expression went back to its baseline levels (Fig. 1H-1K).
In addition to Plaur and Plat, we also examined the expression of Plau (encodes for uPA) and Serpine1 (encodes for PAI-
1) genes, two other components of the plasminogen activator system. In contrast to the results obtained in the generalized 
seizure model [50], where both Plau and Serpine1 responded lately to neuronal activation (72 h after seizure induction), 
we observed an early, although not uniform, upregulation of Plau and Serpine1 genes in response to OF exposure. In 
the hippocampus, Plau was upregulated at 1 h after OF exposure (6.421 ± 2.201 vs 1.000 ± 0.171 at 0 h, p = 0.0027, 
Supplementary figure S3C). In the anterior cortex, Plau was upregulated at 3 h after OF exposure (4.369 ± 1.305 vs 
1.000 ± 0.150 at 0 h, p = 0.0008, Supplementary figure S3A). In the posterior cortex, Plau was upregulated at 24 h after 
OF exposure (103.734 ± 57.982 vs 1.000 ± 0.428 at 0 h, p = 0.0010, Supplementary figure S3B). An early upregulation 
was also observed for Serpine1. In the anterior cortex, Serpine1 was upregulated at 1 h after OF exposure (4.369 ± 1.305 
vs 1.000 ± 0.127 at 0 h, p = 0.0196) and at 24 h after OF exposure (4.237 ± 0.843 vs 1.000 ± 0.127 at 0 h, p < 0.0001) 
(Supplementary figure S4A). In the posterior cortex, Serpine1 was upregulated at 0.5 h after OF exposure (1.946 ± 0.194 
vs 1.000 ± 0.121 at 0 h, p = 0.0041) and at 1 h after OF exposure (2.414 ± 0.318 vs 1.000 ± 0.121 at 0 h, p < 0.0001) 
(Supplementary figure S4B). In the hippocampus, Serpine1 was upregulated at 1 h after OF exposure (2.511 ± 0.676 vs 
1.000 ± 0.142 at 0 h, p = 0.0065, Supplementary figure S4C).
Next, to investigate whether changes in protein expression follow changes in mRNA expression, we analyzed the expres-
sion of uPAR and tPA in the cortex and hippocampus after OF exposure. The results of double immunofluorescence 
staining of the cortex and hippocampus with antibodies to uPAR and NF200 (neuronal marker) are presented in Fig. 2. 
In the cortex and hippocampus, uPAR expression was low to undetectable in both control (0 h) and 4 h after OF exposure 
(Fig. 2A-B). tPA expression was also undetectable in the cortex (Fig. 3A). In contrast, tPA was abundantly expressed in 
the hippocampus of mice in control conditions (Fig. 3B). Partial colocalization of tPA and NF200 signals was observed, 
providing evidence for neuronal expression of tPA. In the hippocampus tPA expression was also present after 4 h and was 
significantly upregulated at 24 h after OF exposure (1.159 ± 0.0841 at 4 h and 1.748 ± 0.210 at 24 h vs 1.000 ± 0.0860 at 
0 h, p = 0.5904 for 4 h and p = 0.0057 for 24 h, Fig. 3B, 3C). In the cortex, tPA expression was undetectable (Fig. 3C, 3D). 
Overall, these results confirm our previous findings that Plat was upregulated in response to OF exposure in hippocampus.
Exposure to an EE was also previously employed as a model of environmental novelty experience in mice [19]. We next 
decided to investigate whether EE exposure also induces changes in the expression of Arc, Plaur and Plat genes. In con-
trast to the relatively brief and acute novelty experience in OF, this time, mice were placed for longer periods in a more 
complex and constantly changing environment. We found that presence in an EE led to an early upregulation of Arc in the 
posterior cortex of mice at 1 h (4.199 ± 0.609 vs 1.000 ± 0.130 at 0 h, p = 0.0039) and in hippocampus (3.982 ± 0.486 vs 
1.000 ± 0.191 at 0 h, p = 0.0004) (Fig. 4B, 4C). No significant differences in Arc expression were observed in the anterior 
cortex (Fig. 4A). Plaur expression was induced in the anterior cortex of mice, at 1 h (1.705 ± 0.138 vs 1.000 ± 0.188 at 
0 h, p = 0.0032) and 3.5 h (1.922 ± 0.180 vs 1.000 ± 0.188 at 0 h, p = 0.0001) (Fig. 4D). 24 h after being in EE, Plaur 
expression returned to the level of control mice and remained unchanged after 14 days of EE (Fig. 4D, 4G). There was a 
similar tendency for early Plaur upregulation in the hippocampus after EE exposure, but it did not reach statistical sig-
nificance (1.734 ± 0.344 at 1 h and 1.733 ± 0.249 at 3.5 h vs 1.000 ± 0.136 at 0 h, p = 0.0765 and p = 0.0769 respectively, 
Fig. 4F). No significant differences in Plaur expression after EE exposure were observed in the posterior cortex (Fig. 4E).
Plat expression in the anterior cortex and hippocampus was not significantly changed by EE (Fig. 4H, 4J). However, Plat 
expression was significantly downregulated in the posterior cortex 24 h after being in EE (0.384 ± 0.025 vs 1.000 ± 0.165 
at 0 h, p = 0.0006, Fig. 4I). Plat expression returned to the level of control values 14 days after being in EE (Fig. 4I, 4K).

Discussion

The primary objective of the present study was to investigate whether the experience of novelty is accompanied by a 
change in the expression of activity-regulated immediate early genes, Plaur and Plat, in brain tissue. The study design 
incorporated two distinct paradigms of environmental novelty exposure: OF exploration and EE. The former, a brief 
exposure to a novel environment, and the latter, an extended exposure to a complex, constantly changing and stimulating 
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environment, allowed for the examination of gene expression patterns in response to varying degrees of cognitive demand. 
We and others have previously shown that both Plat [34] and Plaur [50] genes are rapidly upregulated in response to 
generalized neuronal activation (pentylenetetrazole-induced seizures), but whether their expression is regulated by other 
stimuli in the brain remains unclear. Our results here showed that short-term exposure to an OF resulted in rapid and 
significant induction of Plaur and Plat gene expression in the hippocampus and posterior cortex of mouse brains (Fig. 1). 
Immunofluorescence staining confirmed elevation of tPA protein levels in response to novelty: tPA content in mouse 
brains was significantly increased at 24 h following OF exposure compared to controls (Fig. 3). Furthermore, Plaur, but 

Fig. 2  Immunofluorescent staining of uPAR and NF200 in the mouse cortex and hippocampus at 0 h, 4 h, and 24 h after open field (OF) 
exposure. Representative images of the cortex (A) and hippocampus (B) are shown. Mouse brain tissue was stained with antibodies against 
uPAR (green) and neurofilament 200 (NF200, red). Nuclei were counterstained with DAPI (blue)
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not Plat, was early upregulated after more complex and prolonged environmental novelty—presence in the EE (Fig. 4). 
The observed deregulations of Plaur and Plat gene expression in the brain suggest their involvement in the molecular 
cascades triggered by novel stimuli.
Exposure to novelty is believed to induce the synthesis of plasticity-related proteins, inducing local (and potentially tran-
sient) molecular changes at synapses, which could transform transient forms of memory into long-lasting ones, a concept 
of behavioural tagging [32]. The contribution of immediate early genes in novelty processing, long-term potentiation 
and memory consolidation has been previously documented. For instance, the immediate early genes Arc and Homer1a 
are upregulated in neurons in the hippocampus and neocortex after exposure to a novel environment [56] and have been 
implicated in synaptic plasticity, learning and memory consolidation [8, 28]. Immediate early genes are transiently induced 
in response to stimulation, and Plaur and Plat genes exemplify this pattern, exhibiting a return to baseline expression 
levels within three hours after OF exposure (Fig. 1). The early induction of Plaur and Plat genes suggests their involve-
ment in rapid memory acquisition processes associated with novelty exposure and implies that may play important 
roles in the novelty-dependent modulation of synapses in order to encode memory. A second peak in their expression is 
observed after 24 h of OF exploration aligns with the slower, multi-stage process of memory formation, encompassing 
memory consolidation and neural network restructuring. This two-wave (rapid and delayed) induction pattern after OF 
exploration has also been observed for Arc [36]. The differential induction of Plaur and Plat expression in response to 

Fig. 3  Immunofluorescent staining of tPA and NF200 in the mouse cortex and hippocampus at 0 h, 4 h, and 24 h after open field (OF) expo-
sure. (A, B) Representative images of the cortex зa (A) and hippocampus (B) are shown. Mouse brain tissue was stained with antibodies 
against tPA (green) and neurofilament 200 (NF200, red). Nuclei were counterstained with DAPI (blue). (C) The mean relative fluorescence 
intensity of tPA in the hippocampus. ANOVA, Dunnett’s post hoc test, ** p < 0.01. Data are shown as individual values, mean ± SEM. Each 
time point group comprised 4–6 mice
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OF and EE exposure suggests that these genes may be differentially regulated by different types of novelty experiences. 
OF exposure, which involves more intense and immediate exposure to novelty, induced the expression of both Plaur and 
Plat. In contrast, EE exposure, which provides a more gradual and sustained exposure to novelty, induced the expression 
of Plaur only in the anterior cortex. The differential expression in response to OF and EE environmental novelties was 
described for a plasticity-related protein kinase Mζ (PKMζ) [19].
tPA is normally expressed in the brain parenchyma by neurons and glial cells and its expression is rapidly upregulated in 
an activity-dependent manner [15, 41, 55], which is in line with our findings (Fig. 3). tPA may be involved in regulating 
synaptic plasticity through various mechanisms, including extracellular matrix degradation, cleavage and maturation of 
the neurotrophic factor proBDNF into BDNF, cleavage of neuronal cell adhesion molecule (NCAM), activation of NMDA 
receptors, activation of the extracellular regulated kinase (ERK)1/2 signal transduction and regulation of neuronal migration 

Fig. 4  The level of Arc, Plaur and Plat relative expression in mouse brain after exposure to enriched environment novelty: (A, D, H) in the 
anterior cortex; (B, E, I) in the posterior cortex; (C, F, J) in the hippocampus and (G, K) in three regions combined. (A-C) upaired t-test, 
(D-K) ANOVA, Dunnett’s post hoc test, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data are shown as individual values, mean ± SEM. Each 
time point group comprised 7–12 mice
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and outgrowth [5, 15, 25, 30, 31].   ERK1/2 pathway is one of the key cellular pathways involved in the synthesis of plasticity-
rMadani Solbergelated proteins upon memory consolidation [35]. tPA knockout in mice impairs the learning process [43], 
while tPA overexpression improves mice performance in learning tasks [23], suggesting its important role in information 
processing.
Under physiological conditions, uPAR protein expression in the adult mouse brain is low to undetectable [9, 53], which is 
consistent with our findings (Fig. 2). However, uPAR expression can be significantly induced in response to various stimuli, 
such as injury, inflammation, seizures, or in different pathologies, such as Alzheimer’s disease, Creutzfeld-Jakob disease, 
and multiple sclerosis [2, 33, 50]. Early Plaur mRNA upregulation was robustly seen in response to both OF and EE novelty 
(Fig. 1, 4), uPAR protein expression, however, was not detected until 24 h after OF exposure and was limited to several signals 
in the field of view. This dynamic relationship suggests a nuanced regulatory mechanism governing Plaur mRNA transla-
tion. Notably, spatially restricted local mRNA translation (protein synthesis) is an important mechanism for the regulation 
of neuronal functioning, including synaptogenesis, synaptic signal transmission and plasticity [59]. Whether Plaur mRNA 
is a subject of spatial translational repression and stimulus-induced translational activation requires further exploration. uPA/
uPAR-dependent signalling promotes synaptic recovery in the ischemic brain [10] and the role of this system in learning and 
memory consolidation in physiologic conditions remains to be explored. Single nucleotide polymorphisms in the PLAUR  gene 
are associated with an increased risk of autism spectrum disorder [6]. Plaur knockout in mice disrupts their social interaction 
[21], while double Plau/Plaur knockout mice are more social with other mice and show less interest in their surrounding 
environment [20]. Whether these observations reflect solely developmental defects in the brain or implicate the uPA/uPAR 
system involvement in adult brain function and information processing, or both, remains to be elucidated. Our data presented 
here for the first time suggest that uPAR might be a part of the brain’s physiological response to novel information processing.
To conclude, we found that Plaur and Plat are rapidly upregulated in the mouse cortex and hippocampus in response 
to environmental novelty experiences. This suggests that they may play a role in the synaptic plasticity during novelty 
recognition, learning and memory. Further study of the functions of Plaur and Plat will strengthen our understanding of 
how novel information is processed in the brain.
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