ПРИЛОЖЕНИЕ

Рисунок 1.1 — Схема экспериментальной установки: 1 — циклотрон, 2 — квадрупольные линзы, 3 — отклоняющий магнит, 4 — ионопровод, 5 — защитная стена, 6 — вакуумный клапан, 7, 7a — щели, диафрагмы, 8 — камера рассеяния, 9 — мишень, 10 — цилиндр Фарадея. Детекторы заряженных частиц и γ -квантов на рисунке не показаны.

$$W(\theta_{\gamma}, \, \phi_{\gamma}; \theta_{\alpha}) = \frac{1}{\sqrt{4\pi}} \sum_{k\kappa} \frac{1 + (-1)^k}{\sqrt{2k + 1}} A_{k\kappa}(\theta_{\alpha}) Y_{k\kappa}^*(\theta_{\gamma}, \phi_{\gamma}), \tag{1.1}$$

где $Y_{k\kappa}^*\left(\theta_\gamma,\phi_\gamma\right)$ — сопряженные сферические функции углов θ_γ и ϕ_γ вылета γ -кванта в сферической системе координат (СК) осью Z, направленной вдоль импульса падающих частиц и плоскостью (X, Z), совпадающей с плоскостью реакции («экспериментальной» системе координат), $A_{k\kappa}(\theta_\alpha)$ — вещественные параметры, с точностью до множителей совпадающие с компонентами $\rho_{k\kappa}(\theta_\alpha)$ спин-тензоров матрицы плотности конечного ядра.

$$t_{k\kappa}(\theta_y) = \frac{1}{\sqrt{(2k+1)(2J_B+1)}} \cdot \frac{\rho_{k\kappa}(\theta_y)}{\rho_{00}(\theta_y)}.$$
 (1.2)

$$P_{\pm M}(J,\theta_{y}) = \frac{1}{\sqrt{(2J+1)}} \frac{1}{\rho_{00}(\theta_{y})} \sum_{k\kappa} (-1)^{J-M} \langle JMJ - M | k 0 \rangle \rho_{k\kappa}(J,\theta_{y}) D_{\kappa 0}^{k}(\pi/2,\pi/2,\pi/2).$$
(1.3)

$$R(\theta') = R_0 \left\{ 1 + \sum_{c} \beta_c \cdot Y_{c0}(\theta') \right\}, \tag{2.1}$$

где c — число возможных каналов рассеяния (в частности, число уровней вращательной полосы, к которой принадлежат состояния $A(J_A)$, $B^*(J_B)$ начального и конечного ядер), угол θ' отсчитывается от оси симметрии ядра; $R_0 = r_0 \ A^{1/3}$, A — массовое число ядра, а параметр r_0 для ядер, не тяжелее кремния, обычно полагают равным 1.25 Φ м.

Рисунок 3.1.1 — Угловые зависимости дифференциального сечения упругого (a) и неупругого (б) рассеяния дейтронов на 24 Mg с образованием конечного ядра в состоянии 2^+ (1.369 МэВ) при $E_d=15.3$ МэВ. Точки — эксперимент. На этом и следующих рисунках показаны статистические погрешности, превышающие размеры точек. Расчетные кривые: сплошная и штриховая — результаты расчета по FRESCO с учетом и без учета тензорных сил, штрих-пунктир соответствует расчету по FRESCO с учетом тензорных сил и эффекта реориентации.

Рисунок 3.1.2 — Угловые зависимости некоторых компонент спин-тензоров матрицы плотности ядра 24 Мg в состоянии 2^+ (1.369 МэВ), образованного в неупругом рассеянии дейтронов при $E_d=15.3$ МэВ. Точки — значения $A_{k\kappa}$, восстановленные из экспериментальных функций угловой корреляции 1 . Единицы по оси ординат выбраны так, что величина $A_{00}\equiv d\sigma/d\Omega$ выражается в мбн·ср $^-$. Обозначения расчетных кривых те же, что и на рисунке 3.1.1.

Рисунок 3.1.3 — Угловые зависимости заселенностей магнитных подуровней ядра 24 Mg в состоянии $2^+(1.369 \text{ M}{}_{2}\text{B})$. Обозначения кривых такие же, как на рисунке 3.1.1.

Рисунок 3.1.4 — Угловые зависимости компонент тензоров ориентации мультипольного момента ядра $^{24}{
m Mg}(2^+)$. Обозначения расчетных кривых те же, что и на рисунке 3.1.1.

Рисунок 3.2.1 — Угловые зависимости дифференциального сечения упругого (*a*) и неупругого (*б*) рассеяния протонов на 24 Mg с образованием конечного ядра в состоянии 2^+ (1.369 МэВ) при $E_p = 7.4$ МэВ. Кривые: штрих-пунктир — расчет в МСК, штрих — вклад резонанса с $J(^{25}$ Al)= $3/2^+$, сплошная — соответствует сумме механизмов МСК и резонанса с $J(^{25}$ Al)= $3/2^+$.

Рисунок 3.2.2 — Функции угловой корреляции в неупругом рассеянии протонов с $E_p = 7.4$ МэВ ядрами ²⁴Мg под углами $\theta_d = 40$, 80 и 140° (лаб.) в трех плоскостях регистрации уквантов $\phi_{\gamma} = 180$, 225 и 240°. Кривые — результат 9-компонентной параметризации.

Рисунок 3.2.3 — Угловые зависимости компонент спин-тензоров матрицы плотности ядра 24 Мg в состоянии 2^+ (1.369 M₂B), образованного в неупругом рассеянии протонов при $E_p = 7.4$ М₂B. Нормировка по оси ординат выбрана так, что величина $A_{00} \equiv d\sigma/d\Omega$ выражается в мб·ср⁻¹. Обозначения теоретических кривых те же, что и на рисунке 3.2.1..

Рисунок 3.2.4 — Угловые зависимости заселенностей магнитных подуровней ядра 24 Мg в состоянии 2^+ (1.369 МэВ), образованного в неупругом рассеянии протонов при при $E \approx 7.5$ МэВ/нуклон для различных спиновых проекций M. Обозначения кривых те же, что и на рисунке 3.2.1.

Рисунок 3.2.5 Угловые зависимости компонент квадрупольного тензоров гексадекапольного ориентации ^{24}Mg мультипольных моментов ядра состоянии 2+ (1.369 МэВ), образованного в неупругом рассеянии протонов при $E_p = 7.4$ МэВ. Кружки – эксперимент. Обозначения кривых те же, что и на рисунке 3.2.1.

Рисунок 3.2.6 — Угловые зависимости компонент тензорной поляризации $T_{k\kappa}(\theta_p)$ ядра $^{24}{
m Mg}(2^+)$, образованного в неупругом рассеянии протонов при $E_p=7.4$ МэВ. Кружки — эксперимент. Обозначения кривых те же, что и на рисунке 3.2.1.

Рисунок 3.2.7 — Сравнение дифференциальных сечений (a), заселенностей магнитных подсостояний (δ), некоторых экспериментальных компонент тензоров ориентации мультипольных моментов (a) и тензорной поляризации (a) ядра a4 $Mg(2^+)$, образованного в неупругом рассеянии протонов (кружки), дейтронов (треугольники) и α -частиц (звездочки) при a6 тензорнов.

Рисунок 3.3.1 — Угловые распределения дифференциального сечения реакции 27 Al $(p, \alpha)^{24}$ Mg при $E_p = 7.4$ МэВ с образованием конечного ядра в основном (a) и в первом возбужденном (δ) состояниях. Обозначения расчетных кривых: штрих — механизм подхвата тритона в МСК, штрих-пунктир — статистический механизм образования СЯ, сплошная — суммарное сечение.

Рисунок 3.3.2 — Функции угловой корреляции в реакции 27 Al $(p, \alpha \gamma)^{24}$ Mg с образованием конечного ядра в состоянии 2^+ (1.369 МэВ) при $E_p = 7.4$ МэВ под углами $\theta_\alpha = 30$ (a), 60 (δ) и 90° (s) (лаб.) в трех плоскостях регистрации γ -квантов $\phi_\gamma = 180$, 225 и 240°. Кружки – эксперимент. Точечные кривые – результат 9-компонентной параметризации по формуле (1), обозначения остальных кривых те же, что на рисунке 3.3.1.

Рисунок 3.3.3 — Угловые зависимости компонент квадрупольного и гексадекапольного тензоров ориентации ядра 24 Mg в состоянии 2^+ (1.369 MэВ), образованного в реакции 27 Al(p, $\alpha\gamma$) 24 Mg при E_p = 7.4 МэВ. Обозначения теоретических кривых те же, что и на рисунке 3.3.1.

Рисунок 3.3.4 —. Угловые зависимости заселенностей магнитных подуровней ядра 24 Mg в состоянии 2^+ (1.369 МэВ) при различных проекциях спина M. Обозначения теоретических кривых те же, что и на рисунке 3.3.1.

Рисунок 3.4.1 — Зависимость некоторых компонентов $A_{k\kappa}$ от энергии E_{α} для углов рассеяния θ_{α} (лаб) = 20, 50, 65 и 90°. Обозначения расчетных кривых: штрих — расчет МСК, штрихпунктир — статистический механизм образования СЯ, сплошная — суммарное сечение. Экспериментальные точки соединены кривой «на глаз».

Рисунок 3.4.2 — Зависимость всех компонентов $A_{k\kappa}$ от энергии E_{α} для угла рассеяния θ_{α} (лаб) = 25°. Обозначения кривых такие же, как и на рисунке 3.4.1.

$$K_{1} = A_{00} + A_{20} + A_{40} - \sqrt{6}A_{22} + \sqrt{5/2}A_{42} = 0;$$

$$K_{2} = -4A_{00} + 8A_{20} + A_{40} - \sqrt{70}A_{44} = 0;$$

$$K_{3} = 4\sqrt{6}A_{21} + \sqrt{5}A_{41} + \sqrt{35}A_{43} = 0.$$
(3.4.1)

Рисунок 3.4.3 — Зависимость $K_i(E_{\alpha})$ для двух различных углов θ_{α} (л.с.). Кривые соединяют точки.

Рисунок 3.4.4 — Энергетические зависимости заселенности $P_{\pm M}^J(E)$ подсостояний по проекции M=1 и 2 спина состояния $J=2^+$ для углов $\theta_\alpha=20,\,25,\,50,\,65$ и 90°. Обозначения кривых такие же, как и на рисунке 3.4.1

Рисунок 3.4.5 — Энергетические зависимости некоторых компонентов t kк.для углов $\theta\alpha$ (лаб) = 20, 25, 50, 65 и 90°. Обозначения кривых такие же, как и на рисунке 3.4.1.

$$P_{M}(CH + CH) = \frac{P_{M}(CH)A_{00}(CH) + P_{M}(CH)A_{00}(CH)}{A_{00}(CH) + A_{00}(CH)},$$
(3.4.2)

где обозначение CH относится к расчетам по коду CHUCK. Аналогичное выражение использовано для $t_{k\kappa}$ (CH+CЯ).

Рисунок 3.4.6 — Сравнение экспериментального углового распределения дифференциального сечения неупругого рассеяния с расчетным для энергии $E_{\alpha}=25$ МэВ. Обозначения кривых такие же, как и на рисунке 1.1

$$R(\theta, \varphi) = R_0 \left[1 + \sum_{\mu\nu} \beta_{\mu\nu} \cdot Y_{\mu\nu} (\theta, \varphi) \right]. \tag{4.1}$$

$$R(\theta, \varphi, \tilde{\theta}_{y}) = R_{0} \left\{ 1 + \sum_{k\kappa} N_{k} \cdot t_{k\kappa} (\tilde{\theta}_{y}) \cdot Y_{k\kappa} (\theta, \varphi) \right\}. \tag{4.2}$$

В системе центра масс угол θ_y связан с $\tilde{\theta}_y$ соотношением $\tilde{\theta}_y = \theta_y - \pi$.

$$N_{k} = \frac{\beta_{k0}}{t_{k0}} \left(\theta_{y} = 0^{\circ}\right). \tag{4.3}$$

$$t_{k0} \left(\theta_y = 0^{\circ} \right) = (-1)^{J_B} \sqrt{\frac{1}{2k+1}} \langle J_B 0 J_B 0 | k 0 \rangle, \tag{4.4}$$

$$t_{20}(\theta_y = 0^\circ) = -\sqrt{\frac{2}{35}} = -0.239;$$
 $t_{40}(\theta_y = 0^\circ) = \sqrt{\frac{2}{35}} = 0.239,$ (4.5)

Рисунок 4.1 — Экспериментальные угловые зависимости $t_{k\kappa}(\theta_{\alpha})$ ядра 12 С в состоянии 2^+ , образованного в неупругом рассеянии α -частиц с E_{α} = 30 МэВ. Сплошные кривые — расчет по МСК.

Рисунок 4.2 — Экспериментальные угловые зависимости $t_{k\kappa}(\theta_{\alpha})$ ядра 12С в состоянии 2+, образованного в неупругом рассеянии 3He (треугольники) и дейтронов (кружки) при Ex = 7.5 МэВ/нуклон.

$$t_{20}\left(\theta_{y}=0^{\circ}\right) = \frac{\sqrt{7}}{5\sqrt{10}} \quad S; \qquad S = \frac{\left\{\theta_{j=2}^{2} - \theta_{j=1}^{2}\right\}}{\left\{\theta_{j=2}^{2} + \theta_{j=1}^{2}\right\}}.$$
 (4.6)

$$S = -20(P_{+1} + P_{+2}) + 8. (4.7)$$

Рисунок 4.3 — Угловые зависимости некоторых компонентов $P_{\pm M}\left(\theta_{p}\right)$, $A_{k\kappa}\left(\theta_{p}\right)$ и $t_{k\kappa}\left(\theta_{\alpha}\right)$ ядра 10 Be(2 +, 3.37 MэB), образованного в реакции 9 Be(d , p_{1}) 10 Be(2 +) при E_{d} = 12.5 МэВ (a , 6) и 15.3 МэВ (a). Кружки — эксперимент, кривые — расчеты по МСК для механизма срыва нейтрона: a — с учетом (6 2(9 Be) = 0.5, 6 2(10 Be) = 1) (сплошная) и без учета (штрих) деформации ядер, 6 — с 6 2(10 Be) = 1(сплошная) и 6 2(10 Be) = 1 2 (штрих), 6 4 для положительного (сплошная) и отрицательного (штрих) значения 6 2(10 Be).

Таблица 4.1. Тензоры ориентации $t_{20}(0^\circ)$ и параметры β_2 для различных выстроенных ядер, полученных в реакциях на легких ядрах

Реакция	Энергия частиц,	t ₂₀ (0°)	β_2
	МэВ		-
9 Be(d, p_1) 10 Be(2^+) $\rightarrow \gamma + {}^{10}$ Be	12.5	0.030	1.0
$^{11}B(\alpha, t_1)^{12}C(2^+) \rightarrow \gamma + ^{12}C$	25.0	-0.072	-0.5 ± 0.2
$^{12}\text{C}(d, d_1)^{12}\text{C}(2^+) \rightarrow \gamma + ^{12}\text{C}$	15.3	-0.239	-0.5
$^{12}\text{C}(^{3}\text{He}, ^{3}\text{He}_{1})^{12}\text{C}(2^{+})^{+}) \rightarrow \gamma + ^{12}\text{C}$	22.4	-0.239	-0.35
$^{12}\text{C}(\alpha,\alpha_1)^{12}\text{C}(2^+)^+) \rightarrow \gamma + ^{12}\text{C}$	30.0	-0.239	−0.55±0. 5

Рисунок 4.4 – Динамическая деформация R/R_0 (панель a) ядра 12 С (2^+), образованном в неупругом рассеянии α -частиц при E_{α} = 30 МэВ. Ось Z направлена по импульсу ядра отдачи. Указаны углы θ_{α} (с.ц.м.). На панели δ показаны сечения динамической деформации плоскостями XZ (тонкие линии), YZ (пунктир) и XY (толстые линии).

Рисунок 4.5 — То же, что и на рисунке 4.4, для ядра 12 C(2^+), образованного в неупругом рассеянии дейтронов с энергией 15.3 МэВ.

Рисунок 5.1 - Диаграммы, иллюстрирующие механизмы реакции A(t, p)B: a- срыв динейтрона; δ - механизм независимой передачи нейтронов.

Рисунок 5.2 — Дифференциальные сечения реакций: $1 - ^7 \text{Li}(t, p) ^9 \text{Li}(3/2^-)$, $2 - ^9 \text{Be}(t, p)^{11} \text{Be}$, $3 - ^9 \text{Li}(t, p)^{11} \text{Li}$ для $(1p)^2 a$ и $(2s)^2 \delta$ конфигураций. Точки — эксперимент, тонкая сплошная кривая — механизм передачи динейтрона, точечная — двухступенчатый механизм передачи нейтронов, сплошная — суммарное сечение.

Таблица 5.1. Среднеквадратичные расстояния динейтрона $\langle L_{nn} \rangle$ в 11 Li, 11 Ве и каждого нейтрона $\langle L_1 \rangle, \langle L_2 \rangle$ в 11 Ве относительно ядра-кора

Ядро	R^m , $\Phi_{\rm M}$	Конфигурация ВФ ядер ¹¹ Li и ¹¹ Ве	$\left\langle L_{\scriptscriptstyle nn} ight angle$	$\langle L_{_{\! 1}} angle$	$\langle L_2 \rangle$
¹¹ Li	3.14	$ (1p_{3/2})^5[f_1](1p_{1/2})^2[2]\rangle$	6.46		
	[64]				
¹¹ Be	2.94	$\left (1p_{3/2})^6 [f_1] 2s \right\rangle$	3.45	3.37	7.99
	[64]				

$$\langle L \rangle = \sqrt{\int r^2 W(r) dr}$$
 (5.1)