Semi-Inverse Solution of a Pure Beam Bending Problem in Gradient Elasticity Theory: The Absence of Scale Effectsстатья
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 30 апреля 2021 г.
Аннотация:The semi-inverse solutions of pure beam bending problems within the three-dimensional formulation of gradient elasticity theory as exact tests for the problem of estimating the efficient bending stiffness of so-called scale-dependent thin beams and plates due to the necessity of modelling sensing devices are presented. It is shown that the solutions within the gradient elasticity theory give classic beam bending stiffnesses and demonstrate the invalidity of the widespread results and estimates obtained in the past 15 years during study of scale effects within the gradient beam theories, according to which the relative bending stiffness grows by a hyperbolic law with decreasing thickness.