Dictionary-based ambiguity resolution in Russian named entities recognition. A case studyстатья

Работа с статьей

[1] Brykina M. M., Faynveyts A. V., Toldova S. J. Dictionary-based ambiguity resolution in russian named entities recognition. a case study // Компьютерная лингвистика и интеллектуальные технологии. По материалам ежегодной Международной конференции Диалог (2013). — Vol. 1 of Вып. 12 (19). — Москва, 2013. — P. 163–177. The Information Extraction task and the task of Named Entities recognition (NER) in unstructured texts in particular, are essential for modern Mass Media systems. The paper presents a case study of NER system for Russian. The system was built and tested on the Russian news texts. The method of ambiguity resolution under discussion is based on dictionaries and heuristic rules. The dictionary-oriented approach is motivated by the set of strict initial requirements. First, the target set of Named Entities should be extracted with very high precision; second, the system should be easily adapted to a new domain by non-specialists; and third, these updates should result in the same high precision. We focus on the architecture of the dictionaries and on the properties that the dictionaries should have for each class of Named Entities in order to resolve ambiguous situations. The five classes under consideration are Person, Location, Organization, Product and Named Event. The properties and structure of synonyms and context words, expressions and entities necessary for disambiguation are discussed.

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть